Please use this identifier to cite or link to this item: http://paper.sci.ui.ac.id/jspui/handle/2808.28/38
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSulaksono, Anto-
dc.date.accessioned2016-02-21T14:28:33Z-
dc.date.available2016-02-21T14:28:33Z-
dc.date.issued2013-08-
dc.identifier.issn17936608-
dc.identifier.other10.1142/S0218301313500614-
dc.identifier.urihttp://paper.sci.ui.ac.id/jspui/handle/2808.28/38-
dc.description.abstractThis paper studies the formation cross-sections of super heavy (SH) nuclei in some cold fusion reactions of radioactive neutron-rich projectiles with double-magic 208Pb target. In this study, the cross-sections of capture, fusion and evaporation residues in one- and two-neutron (1n and 2n) channels are calculated by using neutron-rich Fe, Ni and Zn projectiles are compared to the cross-sections calculated using stable Fe, Ni and Zn projectiles. The heights of fusion barrier and their positions in all reactions considered in this study are also compared to the heights and positions calculated using the estimation method proposed by Dutt and Puri. For cold fusion reactions with stable Fe, Ni and Zn projectiles, the heights of fusion barrier and the cross-sections of evaporation residues in 1n and 2n channels are compared to their corresponding experimental data. In general, for reactions using projectiles with the same proton number, the neutron-rich projectile is found to yield relatively-heavier mass of SH nucleus and larger evaporation residue cross-section, compared to those of the corresponding stable projectiles. However, in certain reactions, the cross-sections of neutron-rich projectile can be slightly larger or slightly smaller than that of the corresponding stable projectile. This behavior is highly affected by the charge of projectile and the fission barrier of the formed compound nucleus (CN). In addition, the 292114 is found to be the heaviest compound nucleus formed in cold fusion reaction by using neutron-rich nuclei as the projectile, but the cross-section of evaporation residue in one-neutron channel is still around few pico barns (pb).en_US
dc.language.isoen_USen_US
dc.publisherWorld Scientific Publishingen_US
dc.relation.ispartofseriesVolume 22;Issue 8-
dc.sourceInternational Journal of Modern Physics E Volume 22, Issue 08, August 2013, 1350061 (2013) [11 pages]-
dc.source.urihttp://www.worldscientific.com/doi/abs/10.1142/S0218301313500614en_US
dc.subjectCold fusionen_US
dc.subjectneutron-rich projectileen_US
dc.subjectsuper heavy elementen_US
dc.titleCold Fusion Reactions Using Neutron-Rich Projectilesen_US
dc.typeArticleen_US
Appears in Collections:Journal Collection

Files in This Item:
File Description SizeFormat 
10. Cold Fusion Reactions Using Neutron-Rich Projectiles.compressed.pdf1,44 MBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.