Please use this identifier to cite or link to this item:
Title: Analyzing the MERS disease control strategy through an optimal control problem
Authors: Aldila, Dipo
Padma, Herningtyas
Khotimah, Khusnul
Desjwiandra, Bevina
Tasman, Hengki
Keywords: MERS
medical mask
supportive care
basic reproduction number
optimal control
Issue Date: Mar-2018
Publisher: Technical University Press
Series/Report no.: Volume 28;No. 1
Abstract: A deterministic mathematical model of the Middle East respiratory syndrome (MERS) disease is introduced. Medical masks, supportive care treatment and a government campaign about the importance of medical masks will be involved in the model as time dependent variables. The problem is formulated as an optimal control one to minimize the number of infected people and keep the intervention costs as low as possible. Assuming that all control variables are constant, we find a disease free equilibrium point and an endemic equilibrium point explicitly. The existence and local stability criteria of these equilibria depend on the basic reproduction number. A sensitivity analysis of the basic reproduction number with respect to control parameters tells us that the intervention on medical mask use and the campaign about the importance of medical masks are much more effective for reducing the basic reproduction number than supportive care intervention. Numerical experiments for optimal control problems are presented for three different scenarios, i.e., a scenario of different initial conditions for the human population, a scenario of different initial basic reproduction numbers and a scenario of different budget limitations. Under budget limitations, it is much better to implement the medical mask intervention in the field, rather than give supportive care to control the spread of the MERS disease in the endemic prevention scenario. On the other hand, the medical mask intervention should be implemented partially together with supportive care to obtain the lowest number of infected people, with the lowest cost in the endemic reduction scenario.
ISSN: 1641-876X
Appears in Collections:Journal Collection

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.